**Original Research** 

# Role of Municipal Sewage Sludge in Incorporating Cr, Ni, Cu, and Zn into Cement Clinker

## Wei Liu, Haihua Cao, Jingcheng Xu\*, Jia Liu, Juwen Huang, Xiangfeng Huang, Guangming Li

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Education Ministry, Tongji University, Shanghai 200092, China

> Received: 2 July 2017 Accepted: 10 September 2017

## Abstract

While simultaneous processing of heavy metal-rich waste and municipal sewage sludge (MSS) in cement kilns may be a useful measure for protecting the environment, simultaneous co-disposal of these two types of wastes has seldom been reported in detail. In this study, we examined how MSS influenced the fixation of heavy metals during clinkerization and determined the main controlling mechanisms through analyzing the polymorphism of tricalcium silicate ( $C_3S$ ), mineral composition of MSS, and element distribution in the clinker. The results showed that MSS had negative effects on the fixation of heavy metals, with reductions of 12.9%, 8.7%, 3.2%, and 1.2% in the amounts of Cu, Ni, Cr, and Zn fixed, respectively. These changes were mainly attributed to the presence of trace elements – in particular phosphorus from the MSS, which caused the polymorphism of  $C_3S$  to change in the order: rhombohed ral—monoclinic—triclinic. As well as occurring as  $C_2S-C_3P$ , phosphorus also occurred in new phases of  $K_2NiP_2O_7$ ,  $K_2Cu(PO_3)_4$ , and  $Cu_4O(PO_4)_2$  in cement clinker. In general, trace elements from the MSS, especially phosphorus, decreased the solubility of heavy metals in cement clinker through changing the polymorphism of C3S, and resulting in a decrease in the fixation ratios of heavy metals.

Keywords: heavy metals-rich waste, municipal sewage sludge, co-processing, cement kiln, polymorphism

## Introduction

Processes carried out in cement kilns have various fundamental characteristics, namely high temperatures and long residence times, good turbulence and mixing conditions, and no generation of such by-products as slag, ashes, or liquid residues [1-2]. These characteristics mean that cement kilns are suitable for the co-disposal of industrial wastes, including heavy metal-rich wastes that frequently contain Cr, Ni, Cu, and Zn [3-5]. The codisposal approach for industrial wastes in cement kilns has been widely and successfully used in the United States, Europe, Japan, and other developed countries for several decades and, in recent years, has also been widely used in China [6]. Furthermore, the characteristics of the cement kiln process also mean that co-processing is a sustainable disposal option for municipal sewage sludge (MSS) [7-8]. At present, MSS is produced at a rate of about 600

<sup>\*</sup>e-mail: xujick@tongji.edu.cn, jcxutj@126.com

million tons of dry sludge (DS) per year in China [9], and production is predicted to reach 1,200 Mt DS/y by 2020. In an attempt to solve this huge and environmentally sensitive problem, MSS has been co-processed in cement kilns in China since 2008.

Various policies and national standards have been introduced to encourage and support co-processing of wastes containing heavy metals and MSS in China, such as the code of design for industrial waste co-composition in cement kilns (GB 50634-2010) [10] and the code of design for sludge co-processing in cement kilns (GB 50757-2012) [11]. Numerous studies have examined the effects of heavy metals or MSS on cement clinkerization. The main components of common Portland cement clinker are C<sub>3</sub>S (3CaO·SiO<sub>2</sub>, 60 wt.%), C<sub>2</sub>S (2CaO·SiO<sub>2</sub>, 20 wt.%), and interstitial material that includes  $C_3A(3CaO \cdot Al_2O_3), C_4AF$ (4CaO·Al<sub>2</sub>O<sub>2</sub>·Fe<sub>2</sub>O<sub>2</sub>), free CaO, and metal-rich compounds [12-13]. It has been reported that Portland cement clinker can trap and incorporate about 84% of chromium in interstitial materials [14]. Chromium compounds such as Ca<sub>6</sub>Al<sub>4</sub>Cr<sub>2</sub>O<sub>15</sub>, Ca<sub>5</sub>Cr<sub>3</sub>O<sub>12</sub>, Ca<sub>5</sub>Cr<sub>2</sub>SiO<sub>12</sub>, and CaCr<sub>2</sub>O<sub>7</sub>, with chromium oxidation states of +3, +4.6, +5, and +6, respectively, are commonly found in modern clinker [15-16]. Ni mainly combines with Mg in the form of MgNiO, at a distribution ratio of 61.2%, and is also present in  $C_3S$  and  $C_4AF$  at distribution ratios of 24.9% and 10.3%, respectively [17]. Other studies have shown that CuO can promote the consumption of CaO, accelerate the formation and growth of C<sub>2</sub>S, and transform C<sub>2</sub>S from rhombohedral to monoclinic [18]. These effects of CuO were mainly attributed to the quantity and properties of the liquid phase, namely formation temperature, quantity, and viscosity [18-19]. It was reported that ZnO caused the formation of C<sub>2</sub>A to decrease sharply and formed new compounds of Ca<sub>6</sub>Zn<sub>3</sub>Al<sub>4</sub>O<sub>15</sub> and Ca<sub>3</sub>ZnAl<sub>4</sub>O<sub>10</sub> [20-21]. In addition, many studies have reported the effects of MSS on cement clinkerization [22-24]. For example, the contents of the major components of clinker that contained MSS were reported to be similar to those in ordinary Portland cement, but the C<sub>2</sub>S content was slightly higher because of phosphorus from MSS [24].

However, while policies, national standards, and previous research may have considered the effects of heavy metals or MSS on cement clinkerization, they have not considered the simultaneous co-disposal of wastes containing heavy metals and MSS. Actually, many cement works, including cement plants in Beijing and Guangzhou, have production lines that co-process the two kinds of waste at the same time [25]. Therefore, the effects of MSS on the disposal of heavy metal-containing waste during cement clinkerization need to be clarified. To enable optimization of the simultaneous co-disposal process, further studies of the mechanisms are also needed.

In this study, we determined the effects of MSS on heavy metal fixation ratios and on the cement clinker crystalline phases by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and x-ray diffraction (XRD). We also considered the mechanisms that influenced the fixation ratios of heavy metals through an examination of the polymorphism of  $C_3S$ , the mineral composition of MSS, and the distribution of elements in interstitial material.

#### **Materials and Methods**

#### Materials

We obtained raw meal (RM) cement from a cement plant in Beijing. We collected MSS samples from a municipal wastewater treatment plant in Beijing that used the anaerobic-anoxic-oxic process to remove nitrogen and phosphorus from the wastewater. The chemical compositions of the RM and MSS are shown in Table 1.

#### Preparation of Clinkers

The composition of Chinese cement clinkers are typically controlled at silica ratios (SM, SiO<sub>2</sub>/  $(Al_2O_3+Fe_2O_3))$  of around 1.70-2.70, alumina ratios (IM, Al<sub>2</sub>O<sub>2</sub>/Fe<sub>2</sub>O<sub>2</sub>) of approximately 0.90-1.90, and lime saturation (KH, (CaO-1.65Al<sub>2</sub>O<sub>2</sub>-0.35Fe<sub>2</sub>O<sub>2</sub>)/2.80SiO<sub>2</sub>) values of approximately 0.85-0.96 [26-27]. In this study, the ratios of the three compositional parameters, SM, IM, and KH, were maintained at 1.82, 1.23, and 0.87, respectively. In the reference samples, different amounts of heavy metals (Cr<sub>2</sub>O<sub>3</sub> 2%, NiO 1.5%, CuO 2 wt%, and ZnO 1.5%) were homogenized with RM to simulate coprocessing of waste containing heavy metals in a cement kiln. In the experimental samples, 9 wt% of both MSS and heavy metals were mixed with RM to simulate the combined co-processing of MSS and heavy metalcontaining wastes. To ensure that the three compositional parameters would not be changed by MSS, 2.6 wt% of SiO<sub>2</sub> (AR), 2.35 wt% of Al<sub>2</sub>O<sub>3</sub> (AR), 2.4 wt% of CaO (AR), and 1.05 wt% Fe<sub>2</sub>O<sub>3</sub> (AR) were added to the raw mixtures of the experimental samples. The raw mixtures of the above two groups were prepared with deionized water, put into cylindrical molds, and pressed into 40×5 mm slices by applying a pressure of 30 MPa. To form clinkers, the slices were then heated in a furnace to 1,450°C at a rate of 10°C/min, after which they were held for 1 h in the furnace, and then cooled to room temperature.

Table 1. Major chemical properties and heavy metal concentrations of RM and MSS.

| Somulo nomos | Chemical compositions (%) |                               |                                |                                |                  |  |  |
|--------------|---------------------------|-------------------------------|--------------------------------|--------------------------------|------------------|--|--|
| Sample names | LOIa                      | SiO <sub>2</sub>              | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | CaO              |  |  |
| RM           | 28.78                     | 14.30                         | 2.68                           | 2.48                           | 47.60            |  |  |
| MSS          | 38.93                     | 6.80 3.10                     |                                | 8.60                           | 30.50            |  |  |
| Sample names | MgO                       | P <sub>2</sub> O <sub>5</sub> | SO <sub>3</sub>                | Na <sub>2</sub> O              | K <sub>2</sub> O |  |  |
| RM           | 2.72                      | N.D.                          | 0.30                           | N.D.                           | 0.54             |  |  |
| MSS          | 1.20                      | 3.3                           | 4.3                            | 0.17                           | 0.49             |  |  |

<sup>a</sup>. LOI: Loss on ignition at 1,000°C.

#### Sample Analysis

## Chemical Composition of MSS, RM, and Clinkers

The chemical composition of pre-treated vacuum freeze-dried MSS, RM, and clinker samples were confirmed with a wavelength dispersion x-ray fluorescence spectrometer (XRF; PW2404, Philips, Amsterdam, NL).

## Heavy Metal Concentrations in Raw Mixtures and Clinkers

Approximately 0.2000 g of the mortar sample was accurately weighed into a 100 ml Teflon beaker, to which 1.5 ml of concentrated hydrogen peroxide  $(30\% H_2O_2)$  and 20 ml of aqua regia (HNO<sub>3</sub>: HCl = 1:3) were then added. Samples were microwave-digested (Milestone ETHOS1) at 200°C for 30 min. The solution was then cooled to room temperature, filtered, diluted with deionized water, and acidified to pH 4 with HNO<sub>3</sub> in a 100 ml flask. The element concentrations in the solutions were determined by ICP-AES (Agilent 720ES, National Instruments, USA).

#### Major Phases in Clinkers

Clinker crystalline phases were identified with a diffractometer (D8-Advance, Bruker Optics, Germany), with a two-theta range from  $25^{\circ}$  to  $65^{\circ}$  in  $0.02^{\circ}$  steps, and a step-length of 4 s. The radiation source was Cu Ka at a wavelength of 0.1541 nm (40 kV).

#### Element Distributions in Clinkers

A field emission scanning electron microscope coupled with an energy-dispersive x-ray spectrometer (JSM-7800 FPRIME, JEOL, Japan) was used to obtain detailed observations of the morphology and element distribution of the clinkers [28].

#### **Results**

## Effects of MSS on Heavy Metal Fixing Ratios

We used the heavy metal concentrations in the raw mixtures and clinkers to calculate the fixation ratios, as shown in Eq. (1):

Table 2. Fixation ratios of different heavy metals (with and without MSS).

| Items                    | Cr   | Ni   | Cu   | Zn   |
|--------------------------|------|------|------|------|
| Samples without MSS      | 93.5 | 98.9 | 87.1 | 77.4 |
| Samples incorporated MSS | 90.3 | 90.2 | 74.2 | 76.2 |
| Amounts of reduction (%) | 3.2  | 8.7  | 12.9 | 1.2  |

Fixation ration 
$$_{i} = \frac{K_{i}}{S_{i}}(1 - LOI)_{(1)}$$

...where i refers to the heavy metal species; and K and S are the heavy metal concentrations in the clinkers and raw mixtures, respectively.



Fig. 1. XRD patterns of clinkers sintered with different types of heavy metals with and without MSS.

| Samples<br>names | Metal-containing minor<br>phases                                                                                                       | Substitution pattern          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| RCr              | $Cr_2SiO_4$                                                                                                                            | Cr→Ca                         |
| RMCr             | $\begin{array}{c} Ca_{6}Al_{4}Cr_{2}O_{15}, Ca_{3}Cr_{2}Si_{3}O_{12}\\ Ca_{5}Cr_{2}SiO_{12} \end{array}$                               | Cr→Ca/Si                      |
| RNi              | MgNiO <sub>2</sub> , Mg <sub>0.4</sub> Ni <sub>0.6</sub> O                                                                             | Ni-Mg com-<br>pound           |
| RMNi             | $\begin{array}{c} \text{MgNiO}_2, \text{NiAlO}_4, \text{Ni}_2\text{Al}_{18}\text{O}_{29},\\ \text{NiAl}_{32}\text{O}_{49} \end{array}$ | Ni-Mg and Ni-<br>Al compounds |
| RCu              | CuSiO <sub>3</sub> , CaCuO <sub>2</sub> , CaCu <sub>2</sub> O <sub>3</sub> ,<br>CaCu <sub>7</sub> O                                    | Cu→Ca                         |
| RMCu             | CaCuO <sub>2</sub> , CaCu <sub>2</sub> O <sub>3</sub> , CaCu <sub>7</sub> O,<br>CuA <sub>1</sub> O2                                    | Cu→Ca, Cu-Al<br>compounds     |
| RZn              | Ca <sub>3</sub> ZnAl <sub>4</sub> O <sub>10</sub> , ZnSiO <sub>3</sub>                                                                 | Zn→Ca                         |
| RMZn             | $\frac{Zn_{2}Al_{4}Si_{5}O_{18},Zn_{4}Al_{22}O_{37}}{Zn_{3}Al_{94}O_{144}}$                                                            | Zn→Ca, Zn-Al<br>compounds     |

Table 3. Major metal-containing phases and substitution patterns of different clinkers.

The calculated results are shown in Table 2. Without MSS, clinkerization effectively immobilized Cr, Ni, Cu, and Zn. After adding MSS, however, the fixing ratios of Cr, Ni, Cu, and Zn decreased by different degrees; for example, the fixation ratio of Cu decreased from 87.1% to 74.2% after MSS was introduced.

## Effects of MSS on Crystalline Phases of Cement Clinkers

Changes in the crystalline phases of cement clinkers were detected by XRD. Major phases, such as  $C_3S$ and  $C_2S$ , and interstitial phases, such as metal silicate and aluminum oxides, are shown in the XRD patterns in Fig. 1.

As shown in Fig. 1, additions of MSS had a remarkable influence on the major crystalline phases of clinker that contained Cu and Ni. The comparative intensities of  $C_3S$  at 29.2°, 51.7°, 56.5°, 60.09°, and 62.46° almost disappeared when MSS was added. Correspondingly, the comparative intensities of Cr and Zn that contained clinkers also decreased after adding MSS, but by relatively small amplitudes. The changes in the amplitudes in the XRD pattern are consistent with the changes in the fixation ratios shown in Table 2, which indicates that the fixation of heavy metals during clinkerization was closely related to the polymorphs of the major clinker crystalline phases [18, 29-30].

Introductions of MSS also impacted the species of interstitial material in clinker, and, in particular, on metal-containing phases. The metal-containing phases in each clinker sample and the substitution patterns for each metal from the XRD pattern shown in Fig. 1 are summarized in Table 3. The heavy metal-containing phase in the reference clinkers (without MSS) was similar to those reported in existing studies [17, 20]; for example, Ni mainly combined with Mg to form MgNiO, and Cu mainly formed  $CaCuO_2$ . In the experimental samples that contained MSS, metal-containing phases not only existed in the above forms but also as new metal-Al compounds, such as nickel aluminum oxides, copper aluminum oxides, and zinc aluminum oxides, which was consistent with the results reported by Yuanyuan Tang et al. [31].

## Discussion

## Mechanisms that Determined Heavy Metal Fixation in Cement Clinker

During cement clinker calcination, it is impossible to avoid impacts on the structure of the crystals in the crystalline phases. This characteristic of crystal chemical means that clinker lattices can accept impure ions. Therefore, heavy metals can become fixed in the clinker by substitution with either Ca or Si to form a solid (isomorphous replacement) or by interring the space of the lattice (interstitial solid solution).

As one of the principal components of Portland cement clinker,  $C_3S$  has seven polymorphs, including three triclinic ( $T_1$ ,  $T_2$ , and  $T_3$ ), three monoclinic ( $M_1$ ,  $M_2$ , and  $M_3$ ), and a rhombohedral R. These modifications appear in this order, via successive phase transformations, when heated:

$$T_1 \stackrel{620^{o}C}{\longleftrightarrow} T_2 \stackrel{920^{o}C}{\longleftrightarrow} T_3 \stackrel{980^{o}C}{\longleftrightarrow} M_1 \stackrel{990^{o}C}{\longleftrightarrow} M_2 \stackrel{1060^{o}C}{\longleftrightarrow} M_3 \stackrel{1070^{o}C}{\longleftrightarrow} R$$

At room temperature, pure  $C_3S$  only exists in the  $T_1$  form. The other six modifications are stable only at higher temperatures or as solid solutions with stabilizing foreign oxides. Common foreign oxides are  $Cr_2O_3$ , NiO, CuO,

Table 4. Relationships between  $C_3S$  polymorphs and metal oxide contents.

| Metal<br>oxides                | Polymor-<br>phism of $C_3S$    | Percentage<br>of oxides | Specimen              | Author                        |  |
|--------------------------------|--------------------------------|-------------------------|-----------------------|-------------------------------|--|
|                                | M <sub>1</sub>                 | 4-5.0%                  |                       | N.K.<br>Katyal et<br>al. [29] |  |
| Cr <sub>2</sub> O <sub>3</sub> | T <sub>2</sub>                 | 1-2.0%                  | Pure C <sub>3</sub> S |                               |  |
|                                | T <sub>1</sub>                 | 0-0.5%                  |                       |                               |  |
|                                | T <sub>2</sub>                 | 2.5%                    |                       | D Stephan                     |  |
| NiO                            | $T_1 + T_2$                    | 0.02-<br>0.05%          | Pure C <sub>3</sub> S | et al. [33]                   |  |
|                                | M <sub>2</sub>                 | 3%                      | CaCO <sub>2</sub> and | Wang                          |  |
| CuO                            | $T_2$                          | 1-2%                    | SiO <sub>2</sub>      | al. [32]                      |  |
|                                | R                              | 1.5-1.6%                |                       |                               |  |
| ZnO                            | M <sub>1</sub> +M <sub>2</sub> | 1.2%                    | Clinker               | Ivan Odler                    |  |
|                                | T <sub>2</sub>                 | 0.4-1.0%                | Chilker               | et al. [34]                   |  |
|                                | T <sub>1</sub>                 | 0-0.3%                  |                       |                               |  |

and ZnO. The percentages of these oxides are directly related to the metastability and polymorphism of  $C_3S$  [18, 32]. Conversely, the  $C_3S$  polymorph of the heavy metalcontaining clinker can reflect the solid solubility of the metal. The relationships between the  $C_3S$  polymorph and metal oxide contents reported in previous studies are shown in Table 4 [29, 32-34]; these studies report decreases in the solubility of  $C_3S$  in the order: rhombohedral C3S > monoclinic C3S > triclinic C3S. Therefore, by analyzing  $C_3S$  polymorphism in clinker samples, we can obtain information on the amounts of heavy metals that are incorporated in  $C_3S$ .

## Effects of Municipal Sewage Sludge on Polymorphism of Tricalcium Silicate (C3S)

As discussed in section 4.1, polymorphism of  $C_3S$  in clinker can reflect the amount of heavy metals that are incorporated in  $C_3S$ . Furthermore, the peaks that

(a) RCr

appear between  $32^{\circ}$  and  $33^{\circ}$  and also between  $51^{\circ}$  and  $52^{\circ}$  in the XRD patterns of the C<sub>3</sub>S polymorphs are good indicators of the polymorph symmetries [35-36]. Because the reflections in each group are equivalent in R, a non-splitting peak appears in each range. When the R cell is distorted to form a monoclinic subcell, the peak in these ranges split into doublets. The triclinic modifications have a triclinic subcell, which gives triplet peaks in those ranges [32]. We carried out a detailed examination of the XRD peaks from  $32-33^{\circ}$  and  $51-52^{\circ}$  in Fig. 2.

As shown in Fig. 2a), non-smooth doublet peaks observed at 32-33° and 51-52° appear almost as one smooth peak. This shows that  $C_3S$  polymorphs in RCr are mainly composed of  $M_2$ . After introducing MSS (Fig. 2b), both the peaks of 32-33° and 51-52° become triplets. Moreover, the intensity of 51-52° diffraction peaks becomes weak. These indicate that the  $C_3S$  polymorph of RMCr is mainly  $T_2$ . For the Ni-contained clinkers, the XRD pattern of RNi (Fig. 2c) shows doublet peak at 32-33°, and 2 $\theta$  of





(b) RMCr

620

| C                           |      | Polymorphism        | Trace element oxides          |                 |                                                                         |      |      |      |      |
|-----------------------------|------|---------------------|-------------------------------|-----------------|-------------------------------------------------------------------------|------|------|------|------|
| Sample names                |      | of C <sub>3</sub> S | P <sub>2</sub> O <sub>5</sub> | SO <sub>3</sub> | SO <sub>3</sub> Na <sub>2</sub> O K <sub>2</sub> O MgO TiO <sub>2</sub> |      | MnO  |      |      |
|                             | RCr  | M2                  | 0.10                          | 0.16            | 0.22                                                                    | 0.13 | 4.25 | 0.38 | 0.09 |
| Clinker samples             | RNi  | M3                  | 0.12                          | 0.12            | 0.14                                                                    | 0.14 | 2.46 | 0.34 | 0.10 |
| without MSS                 | RCu  | R                   | 0.13                          | 0.15            | 0.13                                                                    | 0.08 | 3.27 | 0.37 | 0.11 |
|                             | RZn  | M3                  | 0.12                          | 0.11            | 0.11                                                                    | 0.11 | 3.03 | 0.32 | 0.10 |
| Clinker samples<br>with MSS | RMCr | Τ2                  | 0.46                          | 0.39            | 0.25                                                                    | 0.17 | 4.62 | 0.46 | 0.11 |
|                             | RMNi | Т3                  | 0.46                          | 0.31            | 0.25                                                                    | 0.19 | 2.46 | 0.37 | 0.16 |
|                             | RMCu | T2                  | 0.46                          | 0.35            | 0.18                                                                    | 0.10 | 3.39 | 0.38 | 0.12 |
|                             | RMZn | M2                  | 0.48                          | 0.18            | 0.15                                                                    | 0.14 | 3.12 | 0.44 | 0.11 |

Table 5. Trace element oxide concentrations in different clinker samples (wt.%).

51-52° also appears as a smooth doublet peak. However, after adding sludge, a small diffraction peak is added at 33° (Fig. 2d), the peaks at 32-33° changed into triplets. These indicate that the RNi sample is mainly composed of M<sub>3</sub>, whereas the C<sub>3</sub>S polymorph of RMNi is close to T<sub>3</sub>. For the sample RCu (Fig. 2e), smooth doublet peaks are observed at 32-33° and 51-52°, which also appear as one smooth peak, which shows typical characteristic of R. After introducing MSS, the splitting of peaks at 32-33° is triplets and peaks around 57.1°, and also changed into triplets as shown in Fig. 2f). These indicate that RMCu is mainly composed of T<sub>2</sub>. In addition, the C<sub>2</sub>S peaks of RZn (Fig. 2g) are similar to RNi, which are close to the type of M<sub>3</sub>. After adding MSS, the C<sub>3</sub>S polymorph of RMZn (Fig. 2h) changed obviously. 32-33° appears as triplet peaks and 51-52° is almost a singlet, indicating that the C<sub>3</sub>S solid solution is mainly composed of M<sub>2</sub> in the sample of RMZn.

Generally speaking,  $C_3S$  existed in monoclinic or rhombohedral form in reference clinker samples, which is consistent with previous studies (Table 4). However, MSS



Fig. 3. Change multiples of trace elements between experiment clinkers and reference clinkers.

changed the polymorphism of  $C_3S$ , and tended to change from rhombohedral to monoclinic and then to triclinic; for example, the  $C_3S$  polymorph changed from rhombohedral to  $T_2$  in samples that contained Cu, and from  $M_3$  to  $T_3$ in samples that contained Ni. These changes indicate that  $C_3S$  tended to exist in low-temperature polymorphs because of the MSS, and that MSS caused the solubility of heavy metals in clinker to decrease.

## Impact Analysis of Municipal Sewage Sludge on Incorporating Cr, Ni, Cu, and Zn

There were no changes in SM, IM, or KH, so the effects of CaO,  $SiO_2$ ,  $Al_2O_3$ , and  $Fe_2O_3$  can be ignored. The influences caused by MSS were most likely attributed to the trace elements from MSS.

Firstly, trace element concentrations in the two clinker groups were detected by XRF, as shown in Table 5.

The concentrations of all trace elements increased after introducing MSS (Table 5). To determine which trace element changed the polymorphism of  $C_3S$ , element change multiples between reference clinkers and experimental clinkers were calculated (Eq. 2) and the results are shown in Fig. 3:

Change multiple<sub>j</sub> = 
$$\frac{A_j}{B_j} - 1$$
 (2)

...where *j* is the trace element, *Aj* is the concentration of *j*-oxides in the experiment clinkers (with MSS), and *Bj* is the concentration of *j*-oxides in the reference clinkers (without MSS).

The results in Fig. 3 clearly demonstrate that trace elements were more abundant in clinker that contained MSS. As shown in Fig. 3, the  $P_2O_5$  concentration increased the most after adding MSS (showing an increase of 3.09 times), followed by SO<sub>3</sub> (an increase of 3.09 times). The trace element irons can replace Ca<sup>2+</sup> or Si<sup>4+</sup> of C<sub>3</sub>S. Due to their different ionic radius, electrovalence, and electronegativity, lattice imperfections could be generated during the replacement process. Furthermore,

|                                   |                      |              | -            |              |                   |              |              |              |
|-----------------------------------|----------------------|--------------|--------------|--------------|-------------------|--------------|--------------|--------------|
| Phosphorus-containing compounds*  | Clinkers without MSS |              |              |              | Clinkers with MSS |              |              |              |
|                                   | RCr                  | RNi          | RCu          | RZn          | RMCr              | RMNi         | RMCu         | RMZn         |
| $Ca_2P_2O_7$                      | $\checkmark$         | $\checkmark$ | $\checkmark$ |              | $\checkmark$      |              | $\checkmark$ | $\checkmark$ |
| RCaPO <sub>4</sub>                | $\checkmark$         | $\checkmark$ | $\checkmark$ | V            | $\checkmark$      |              |              |              |
| Fe(PO <sub>3</sub> ) <sub>2</sub> |                      | $\checkmark$ | $\checkmark$ |              |                   |              |              |              |
| SiP <sub>2</sub> O <sub>7</sub>   |                      |              |              | $\checkmark$ |                   |              |              | $\checkmark$ |
| $Al_2O_3$ ·x $P_2O_5$             |                      |              |              |              |                   |              |              | $\checkmark$ |
| $Ca_3(PO_4)_2$                    |                      |              |              |              | $\checkmark$      | $\checkmark$ | $\checkmark$ |              |
| C2S-C3P                           |                      |              |              |              | $\checkmark$      |              |              |              |
| $R_2MgP_2O_{7,}$                  |                      |              |              |              |                   | 1            | $\checkmark$ |              |
| $M_{3}(PO_{4})_{2}$               |                      |              |              |              |                   |              | $\checkmark$ |              |
| R MP O                            |                      |              |              |              |                   |              | V            |              |

Table 6. Phosphorus-containing compounds in different clinker samples.

\*: R means to potassium or sodium;  $C_2S-C_3P$  means to  $Ca_2SiO_4 \cdot 0.05Ca_3(PO_4)_2$  and  $Ca_{15}(PO_4)_2(SiO_4)_6$ ; M means to heavy metal.

the vacancies can cause the bond length and bond angle change of O-Si-O. Therefore, the polymorphism of  $C_3S$  changed with the introduction of a trace element. As the similar influence mechanism, maximum concentration element phosphorus should be focused on.

Secondly, in an attempt to clarify the influence of phosphorus on the  $C_3S$  polymorph, the XRD patterns of the phosphorus-containing compounds in the two groups of clinker samples were analyzed in detail. The results are shown in Table 6.

For the clinkers without MSS (see Table 6), phosphate was mainly combined with Ca, Si, and Fe (major elements of cement clinker) to generate orthophosphate, pyrophosphate, and metaphosphate, such as  $RCaPO_4$ ,  $Ca_2P_2O_7$ ,  $SiP_2O_7$ , and  $Fe(PO_3)_2$ . The clinkers with MSS incorporated were quite different. Besides calcium phosphates, phosphate also existed in the form of  $C_2S-C_3P$ , alkali metal-containing compounds, and heavy metal-containing compounds.



Fig. 4. SEM micrographs and elemental x-ray images of Cu- and Ni-containing clinkers: a) RCu, b) RMCu, c) RNi, d) RMNi.



Graphical Abstract

The generation of phosphorus-containing compounds is relative to the properties of P. The ionic radiuses of P<sup>5+</sup>and Si<sup>4+</sup> are 0.38 A and 0.40 A, respectively, which means that Si<sup>4+</sup> that should be incorporated in clinkers and may be replaced by P<sup>5+</sup>. As reported by Cédric Duée's [37], the  $[SiO_4]^{4-}$  orthosilicate groups could be substituted by  $[PO_4]^{3-}$  or thophosphate units in clinkers. The replacement of  $[SiO_4]^{4-}$  by  $[PO_4]^{3-}$  implies an excess of positive charges in the structure that occurred because of the creation of 255 Ca<sup>2+</sup> vacancies, as described by the following equation:

$$2 (SiO_4)^{4-} + Ca^{2+} \rightarrow 2(PO_4)^{3-} + V_{Ca} (V_{Ca}^{=} Ca^{2+} vacancy)$$
(3)

The Ca<sup>2+</sup> vacancies decreased the stability of the solid solution and hindered the generation of highly metastabile C<sub>3</sub>S. Therefore, introducing MSS made the polymorphism of C<sub>3</sub>S change from rhombohedral to monoclinic and to triclinic.

In addition, there were many other kinds of phosphorus-containing compounds in clinker samples. First,  $C_2S-C_3P$  solid solutions such as  $Ca_2SiO_4 \cdot 0.05Ca_3(PO_4)_2$ and  $Ca_{15}(PO_4)_2(SiO_4)_6$  were detected in the XRD pattern of RMCr. This phenomenon was similar to what was observed by Marie-Noe"lle de Noirfontaine [38], who reported that adding phosphorus could cause partial decomposition of  $C_3S$  into  $C_2S$  and CaO phases, and that phosphorus was present in solid solution phases of  $C_2S-C_3P$ . Second, in the clinker samples of RMNi and RMCu, phosphorus was also present in such heavy metal-containing compounds as  $K_2NiP_2O_7$ ,  $K_2Cu(PO_3)_4$ , and  $Cu_4O(PO_4)_2$ . This indicates that parts of Cu and Ni were not incorporated in the calcium silicate phases but that they reacted with P and alkali metals. Third, it is noteworthy that the existence the phosphorus forms changed only slightly in RMCr and RMZn, but changed considerably in RMCu and RMNi samples, which was in line with the changes in the fixation ratios in Table 1.

Therefore, the phosphate contained in MSS not only impacted the polymorphism of calcium silicates, with indirect influences on the fixation of heavy metals, but also directly impacted the fixation of heavy metals through the formation of heavy metal-containing compounds.

In addition, to examine element changes and element distribution in different clinkers in more detail, we used a scanning electron microscope with a back scatter detector (SEM-BSE). The SEM micrographs of clinkers containing Cu and Ni, and x-ray images of Si, Al, Mg, P, Cu, and Ni are shown in Fig. 4.

As shown in Figs 4(a-d), the distribution of Al in these clinkers changed from being concentrated to being relatively decentralized - most likely driven by phosphorus. As previously discussed, the presence of MSS favored substitutions of Si<sup>4+</sup> for P<sup>5+</sup> in the silicate phases. The valencies of Si4+ and P5+ are different and will introduce positive charges to this reaction. Normally, these positive charges can be balanced by the negative charges introduced by substituting Si<sup>4+</sup> for Al<sup>3+</sup> ( $2Si^{4+} \leftrightarrow P^{5+} + Al^{3+}$ ) [24]. Therefore, part of the Al that entered the silicate phase caused the Al to decentralize and promoted the generation of Ca-Al-Metal compounds, like Ca<sub>c</sub>Al<sub>4</sub>Cr<sub>2</sub>O<sub>15</sub> in Table 3. The species of heavy metal-containing compounds in MSS that contained clinkers were much more abundant, especially metal-Al compounds (as shown in section 3.2), which also was consistent with the distribution of Al. Moreover, increases in the P<sub>2</sub>O<sub>5</sub> content can result in increases in the free CaO content and, when the  $P_2O_5$  content in the clinker exceeds 0.5%,  $C_3A$ formation declines [39-40]. The increase in the free CaO and the decline in C<sub>3</sub>A were conducive to the generation of Ca-Metal and Metal-Al compounds (Table 3).

X-ray images of Cu showed that Cu was basically distributed evenly in the reference samples as shown in Fig. 4a), but was transferred to interstitial phases when MSS was introduced (Fig. 4b). The distributions of Ni and Mg were well correlated as shown in Fig. 4c). The abovereported changes in the heavy metal distributions in clinkers are remarkably consistent with the results from the XRD analysis in section 3.2.

## Conclusion

The role of municipal sewage sludge on the incorporation of Cr, Ni, Cu, and Zn into cement clinker was examined at the laboratory scale in our study. From the present study, we can conclude that the fixation ratios of the heavy metals Cu, Ni, Cr, and Zn decreased by 12.9%, 8.7%, 3.2%, and 1.2%, respectively, after the additions of MSS. The decreases in fixation were related to the polymorph of C<sub>2</sub>S and the trace element composition of the MSS. The polymorphism of C<sub>2</sub>S changed from rhombohedral to monoclinic to triclinic. More specifically, in clinker that contained Cr, Ni, Cu, and Zn, the C<sub>2</sub>S polymorph changed from M<sub>2</sub> to T<sub>2</sub>, M<sub>2</sub> to T<sub>3</sub>, R to T<sub>2</sub>, and from M<sub>3</sub> to M<sub>2</sub>, respectively, after MSS was introduced. These changes were mainly caused by the trace elements, phosphorus in particular. Phosphorus from MSS caused the changes of C<sub>3</sub>S polymorphism, and also promoted the generation of the new phases:  $K_2NiP_2O_7$ ,  $K_2Cu(PO_3)_4$ , and  $Cu_4O(PO_4)_2$  in cement clinker. These changes indicate a reduction in the solubility of heavy metals in cement clinker, and reductions in the fixation ratios of heavy metals.

## Acknowledgements

This study was supported by the National Major Science and Technology Project of Water Pollution Control and Management, China (grant No. 2010ZX07319-001-02).

#### References

- ARANDA USÓN A., LÓPEZ-SABIRÓN A.M., FERREI-RA G., LLERA SASTRESA E. Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renew. Sust. Energ. Rev. 23, 242, 2013.
- LV D., ZHU T.L., LIU R.W., LV Q.Z., SUN Y., WANG H.M., LIU Y., ZHANG F. Effects of co-processing sewage sludge in cement kiln on NOx, NH<sub>3</sub> and PAHs emissions. Chemosphere. **159**, 595, **2016**.
- SHIH P.H., CHANG J.E., LU H.C., CHIANG L.C. Reuse of heavy metal-containing sludges in cement production. Cement. Concrete. Res., 35 (11), 2110, 2005.
- CHEN Y.L., SHIH P.H., CHIANG L.C., CHANG Y.K., LU H.C., CHANG J.E. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers

produced from electroplating sludge. J. Hazard. Mater. **170** (1), 443, **2009**.

- ZHANG J., LIU J., LI C., JIN Y., NIE Y., LI J. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization. J. Hazard. Mater. 165 (1-3), 1179, 2009.
- YAN D.H., KARSTENSEN K.H., HUANG Q.F., WANG Q., CAI M.L. Co-processing of industrial and hazardous wastes in cement kilns: a review of current status and future need in China. Environ. Eng. Sci. 27 (1), 37, 2010.
- VALDERRAMA C., GRANADOS R., CORTINA J.L., GASOL C.M., GUILLEM M., JOSA A. Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production. J. Clean. Prod. 51, 205, 2013.
- STASTA P., BORAN J., BEBAR L., STEHLIK P., ORAL J. Appl. Therm. Eng. 26 (13), 1420, 2006.
- 9. NBSC. China Statistics Book 2011. 2012, Beijing: China Statistics Press.
- MOHURD, AQSIQ. Code for Design of Industrial Waste Co-composition in Cement Kiln. China Planning Press: Beijing, 2010.
- 11. MOHURD, AQSIQ. Code for design of sludge co-processing in cement kilns. China Planning Press, Beijing, **2012**.
- THOMANETZ E. Solid recovered fuels in the cement industry with special respect to hazardous waste. Waste Manag. Res. 30 (4), 404, 2012.
- HOKFORS B. Phase chemistry in process models for cement clinker and lime production, in http://umu.diva-portal. org/smash/get/diva2:696534/FULLTEXT01.pdf. Thermal Energy conversion Laboratory: Västerbotten, 2014.
- MURAT M., SORRENTINO F. Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal on the composition and the properties of the clinker and the cement. Cement. Concrete. Res. 26 (3), 377, 1996.
- SINYOUNG S., SONGSIRIRITTHIGUL P., ASAVAPISIT S., KAJITVICHYANUKUL P. Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study. J. Hazard. Mater. 191 (1-3), 296, 2011.
- 16. SINYOUNG S., ASAVAPISIT S., KAJITVICHY-ANUKUL P., SONGSIRIRITTHIGUL P.. Speciation of Cr in cement clinkers obtained from co-burning with Cr<sub>2</sub>O<sub>3</sub>. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 649 (1), 210, 2011.
- YANG Y., XUE J., HUANG Q. Studies on the solidification mechanisms of Ni and Cd in cement clinker during cement kiln co-processing of hazardous wastes. Constr. Build. Mater. 57, 138, 2014.
- MA X.W., CHEN H.X., WANG P.M. Effect of CuO on the formation of clinker minerals and the hydration properties. Cement. Concrete. Res. 40 (12), 1681, 2010.
- ALI M.M., AGARWAL S.K., PAHUJA A. Potentials of copper slag utilisation in the manufacture of ordinary Portland cement. Adv. Cem. Res. 25 (4), 208, 2013.
- GINEYS N., AOUAD G., SORRENTINO F., DAMIDOT D. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn. Cement. Concrete. Res. 41 (11), 1177, 2011.
- BOLIO-ARCEO H., GLASSER F.P. Zinc oxide in cement clinkering part 1. SystemsSystems CaO-ZnO-A1<sub>2</sub>O<sub>3</sub> and CaO-ZnO-Fe<sub>2</sub>O<sub>3</sub>. Adv. Cem. Res. 10 (1), 25, 1998.
- 22. FANG P., TANG Z.J., HUANG J.H., CEN C.P., TANG Z.X., CHEN X.B. Using sewage sludge as a denitration

agent and secondary fuel in a cement plant: A case study. Fuel Process. Tech. **137**, 1, **2015**.

- LIN Y., ZHOU S., LI F., LIN Y. Utilization of municipal sewage sludge as additives for the production of eco-cement. J. Hazard. Mater. 213-214, 457, 2012.
- 24. HUSILLOS RODRÍGUEZ N., MARTÍNEZ-RAMÍREZ S., BLANCO-VARELA M.T., DONATELLO S., GUIL-LEM M., PUIG J. The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. J. Clean. Prod. 52, 94, 2013.
- XIN W., CHENG L., BI-LAN Y., XU Z., JIANG Z., HUAN-ZHONG W. Statue and application of abroad and home co-processing of municipal solid waste by cement kiln. Bulletin of the Chinese ceramic society. 33 (8), 1989, 2014.
- LIN KL, LIN DF, LUO HL. Influence of phosphate of the waste sludge on the hydration characteristics of eco-cement. J. Hazard. Mater. 168 (2-3), 1105, 2009.
- LIN Y.M., ZHOU S.Q., LI F.Z., LIN Y.X. Utilization of municipal sewage sludge as additives for the production of eco-cement. J. Hazard. Mater. 213, 457, 2012.
- WANG F.Z., SHANG D.C., WANG M.G., HU S.G., LI Y.Q. Incorporation and substitution mechanism of cadmium in cement clinker. J. Clean. Prod., 112, 2292, 2016.
- 29. KATYAL N.K., AHLUWALIA S.C., PARKASH R. Effect of Cr<sub>2</sub>O<sub>3</sub> on the formation of C<sub>3</sub>S in 3CaO:1SiO<sub>2</sub>x:Cr<sub>2</sub>O<sub>3</sub> system. Cement. Concrete. Res. **30**, 1361, **2000**.
- LV Y., LI X., MA B., DE SCHUTTER G. Managing Zn wastes in C3S: comparison of two incorporation methods. Mater. Struct. 48 (8), 2659, 2014.
- TANG Y., CHUI S.S., SHIH K., ZHANG L.Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors. Environ. Sci. Technol. 45 (8), 3598, 2011.

- STEPHAN D., MALEKI H., KNÖFEL D., B B.E., B R.H. Influence of Cr, Ni, and Zn on the properties of pure clinker phases Part I. C3S. Cement. Concrete. Res. 29, 545, 1999.
- PEIMING W., HAOXIN L., JIANGUO W. Formation of tricalcium silicate with different content of copper oxide. Journal of the chinese ceramic society. 35 (10), 1353, 2007.
- ODLER I., ABDUL-MAULA S. Polymorphism and hydration of tricalcium silicate doped with ZnO. J. Am. Ceram. Soc. 66 (1), 1, 1983.
- URABE K., SHIRAKAMI T., IWASHIMA M. Superstructure in a Triclinic Phase of Tricalcium Silicate. J. Am. Ceram. Soc. 83 (5), 1253, 2000.
- LV Y., LI X., DE SCHUTTER G., MA B. Stabilization of Cr(III) wastes by C3S and C3S hydrated matrix: comparison of two incorporation methods. Mater. Struct. 49 (8), 3109, 2015.
- DUÉE C., BOURGEL C., VÉRON E., ALLIX M., FAYON F., BODÉNAN F. Phosphorus speciation in dicalcium silicate phases: Application to the basic oxygen furnace (BOF) slag. Cement. Concrete. Res. 73, 207, 2015.
- DE NOIRFONTAINE M.N., TUSSEAU-NENEZ S., SIGNES-FREHEL M., GASECKI G., GIROD-LABIAN-CA C. Effect of Phosphorus Impurity on Tricalcium Silicate T1: From Synthesis to Structural Characterization. J. Am. Ceram. Soc. 92 (10), 2337, 2009.
- LIN K.L., LIN C.Y. Hydration characteristics of waste sludge ash utilized as raw cement material. Cement. Concrete. Res. 35 (10), 1999, 2005.
- 40. HUSILLOS RODRÍGUEZ N., MARTÍNEZ-RAMÍREZ S., BLANCO-VARELA M.T., GUILLEM M PUIG J., LAR-ROTCHA E. Evaluation of spray-dried sludge from drinking water treatment plants as a prime material for clinker manufacture. Cement Concrete. Comp. 33 (2), 267, 2011.